From the Lockean Thesis to Conditionals

Hannes Leitgeb

LMU Munich

May 2011
When is a *conditional* rationally acceptable to an agent?
When is a *conditional* rationally acceptable to an agent?

- P is a subjective probability measure.
When is a *conditional* rationally acceptable to an agent?

- \(P \) is a subjective probability measure, \(A \) is a simple sentence.

\(P \rightarrow A \) is a conditional.
When is a *conditional* rationally acceptable to an agent?

- P is a subjective probability measure, A is a simple sentence.

\[
\text{Bel}_P(A)
\]
When is a *conditional* rationally acceptable to an agent?

- P is a subjective probability measure, A is a simple sentence.
- *The Lockean thesis* LT^r: $\text{Bel}_P(X)$ iff $P(X) > r \geq \frac{1}{2}$.

Bel$_P$(A)

P → A
When is a *conditional* rationally acceptable to an agent?

- P is a subjective probability measure, A is a simple sentence.
- *The Lockean thesis* LT^r: $\text{Bel}_P(X)$ iff $P(X) > r \geq \frac{1}{2}$.
- Bel_P is logically closed (in the sense of doxastic logic).
When is a *conditional* rationally acceptable to an agent?

- P is a subjective probability measure, $A \rightarrow B$ is a conditional.

The Lockean thesis LT^r: $\text{Bel}_P(X) \iff P(X) \geq \frac{1}{2}$.

Bel P is logically closed (in the sense of doxastic logic).
When is a *conditional* rationally acceptable to an agent?

P is a subjective probability measure, $A \rightarrow B$ is a conditional.
When is a *conditional* rationally acceptable to an agent?

- \(P \) is a subjective probability measure, \(A \rightarrow B \) is a conditional.

- *The Lockean thesis* \(LT^{>r} \): \(Bel_P(Y|X) \) iff \(P(Y|X) > r(x?) \geq \frac{1}{2} \).
When is a *conditional* rationally acceptable to an agent?

- P is a subjective probability measure, $A \rightarrow B$ is a conditional.

- “→” of the Lockean thesis: If $\text{Bel}_P(Y|X)$ then $P(Y|X) > r \geq \frac{1}{2}$.

When is a *conditional* rationally acceptable to an agent?

- P is a subjective probability measure, $A \rightarrow B$ is a conditional.
- “\rightarrow” of the Lockean thesis: If $Bel_P(Y|X)$ then $P(Y|X) > r \geq \frac{1}{2}$.
- $Bel_P(\cdot|\cdot)$ is logically closed (in the sense of AGM 1985 on belief revision).
Can we satisfy all of these desiderata simultaneously?
Can we satisfy all of these desiderata simultaneously? (Yes.)

If so, how, and does this lead to a unified theory of

- quantitative belief and qualitative belief,
- absolute belief and conditional belief,
- the acceptability of simple statements and conditionals?
Can we satisfy all of these desiderata simultaneously? (Yes.)

If so, how, and does this lead to a unified theory of

- quantitative belief and qualitative belief,
- absolute belief and conditional belief,
- the acceptability of simple statements and conditionals?

(Yes, or so we hope.)

Plan of the talk:

1. The Lockean Thesis and Absolute Belief
2. “→” of the Lockean Thesis and Conditional Belief
3. Epilogue: Solving A Problem Contextually
Let \mathcal{W} be a set of possible worlds, and let \mathcal{A} be an algebra of subsets of \mathcal{W} (propositions) in which an agent is interested at a time. We assume that \mathcal{A} is closed under countable unions (σ-algebra).

Let P be an agent’s degree-of-belief function at the time.

P1 (Probability) $P : \mathcal{A} \rightarrow [0, 1]$ is a probability measure on \mathcal{A}.

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)}, \text{ when } P(X) > 0.$$

P2 (Countable Additivity) If $X_1, X_2, \ldots, X_n, \ldots$ are pairwise disjoint members of \mathcal{A}, then

$$P(\bigcup_{n \in \mathbb{N}} X_n) = \sum_{n=1}^{\infty} P(X_n).$$
E.g., a probability measure P:

\begin{align*}
\text{A} &: 0.342 \quad \text{B} &: 0.54 \quad \text{C} &: 0.058 \\
\text{A} \cap \text{B} &: 0.018 \\
\text{A} \cap \text{C} &: 0.002 \\
\text{B} \cap \text{C} &: 0.00006 \\
\text{A} \cap \text{B} \cap \text{C} &: 0.03994
\end{align*}

P conditionalized on C:

\begin{align*}
\text{A} &: 0 \\
\text{B} &: 0 \\
\text{C} &: 0.1 \\
\text{A} \cap \text{B} &: 0.897 \\
\text{A} \cap \text{C} &: 0.003
\end{align*}
Accordingly, let Bel express an agent’s beliefs.

B1 (Logical Truth) $Bel(W)$.

B2 (One Premise Logical Closure) For all $Y, Z \in \mathcal{A}$:
If $Bel(Y)$ and $Y \subseteq Z$, then $Bel(Z)$.

B3 (Finite Conjunction) For all $Y, Z \in \mathcal{A}$:
If $Bel(Y)$ and $Bel(Z)$, then $Bel(Y \cap Z)$.

B4 (General Conjunction) For $\mathcal{Y} = \{ Y \in \mathcal{A} | Bel(Y) \}$, $\cap \mathcal{Y}$ is a member of \mathcal{A}, and $Bel(\cap \mathcal{Y})$.

It follows: There is a strongest proposition B_W, such that $Bel(Y)$ iff $Y \supseteq B_W$.
In order to spell out under what conditions these postulates are consistent with the Lockean thesis, we will need the following probabilistic concept:

Definition

(P-Stability) For all $X \in \mathcal{A}$:

X is P-stabler iff for all $Y \in \mathcal{A}$ with $Y \cap X \neq \emptyset$ and $P(Y) > 0$: $P(X|Y) > r$.

So P-stabler propositions have stably high probabilities under salient suppositions. (Examples: All X with $P(X) = 1$; $X = \emptyset$; and many more!)
In order to spell out under what conditions these postulates are consistent with the Lockean thesis, we will need the following probabilistic concept:

Definition

(P-Stability) For all $X \in \mathcal{A}$:

X is P-stable r iff for all $Y \in \mathcal{A}$ with $Y \cap X \neq \emptyset$ and $P(Y) > 0$: $P(X|Y) > r$.

So P-stable r propositions have stably high probabilities under salient suppositions. (Examples: All X with $P(X) = 1$; $X = \emptyset$; and many more!)

Remark: If X is P-stable r with $r \in \left[\frac{1}{2}, 1\right)$, then X is P-stable $\frac{1}{2}$.

(cf. Skyrms 1977, 1980 on resiliency.)
Then the following representation theorem can be shown:

Theorem

Let Bel be a class of ordered pairs of members of a σ-algebra \mathcal{A}, and let $P : \mathcal{A} \rightarrow [0, 1]$. Then the following two statements are equivalent:

1. P and Bel satisfy P_1, B_1–B_4, and $LT \geq P(B_w) > \frac{1}{2}$.

2. P satisfies P_1 and there is a (uniquely determined) $X \in \mathcal{A}$, such that
 - X is a non-empty P-stable $\frac{1}{2}$ proposition,
 - if $P(X) = 1$ then X is the least member of \mathcal{A} with probability 1, and:

 For all $Y \in \mathcal{A}$:

 $Bel(Y)$ if and only if $Y \supseteq X$

 (and hence, $B_w = X$).

This does not yet presuppose P_2.
Example: Let $W = \{ w_1, \ldots, w_7 \}$, let P be as in the example before.

6. $P(\{ w_7 \}) = 0.00006$
5. $P(\{ w_6 \}) = 0.002$
4. $P(\{ w_5 \}) = 0.018$
3. $P(\{ w_3 \}) = 0.058, P(\{ w_4 \}) = 0.03994$
2. $P(\{ w_2 \}) = 0.342$
1. $P(\{ w_1 \}) = 0.54$

This yields the following P-stable sets:

- $\{ w_1, w_2, w_3, w_4, w_5, w_6, w_7 \}$ (≥ 1.0)
- $\{ w_1, w_2, w_3, w_4, w_5, w_6 \}$ (≥ 0.99994)
- $\{ w_1, w_2, w_3, w_4, w_5 \}$ (≥ 0.99794)
- $\{ w_1, w_2, w_3, w_4 \}$ (≥ 0.97994)
- $\{ w_1, w_2 \}$ (≥ 0.882)
- $\{ w_1 \}$ (≥ 0.54)
With P2 one can prove: The class of P-stable propositions X in \mathcal{A} with $P(X) < 1$ is well-ordered with respect to the subset relation.

This implies: If there is a non-empty P-stable X in \mathcal{A} with $P(X) < 1$ at all, then there is also a least such X.
And \textit{almost all} P over finite W have a least P-stable $\frac{1}{2}$ set X with $P(X) < 1!$
And *almost all* P over finite W have a least P-stable $\frac{1}{2}$ set X with $P(X) < 1$!

Hence, for *almost all* P there is an r, such that there is a Bel, where

- **B1–3** Logical closure (with W finite).
- **LTr** For all X: $Bel(X)$ iff $P(X) > r$.
- **NT** There is an X, such that $Bel(X)$ and $P(X) < 1$.
Moral:

- Given P and a threshold r, the agent’s Bel is determined uniquely by the Lockean thesis.

- Bel is even closed logically iff Bel is given by a P-stable set X with $P(X) = r > \frac{1}{2}$.

- So the Lockean thesis and the logical closure of belief are jointly satisfiable as long as the threshold r is co-determined by P.

- This almost never collapses into: $Bel(X)$ iff $P(X) = 1$.
And finally, of course:

- *Lottery Paradox*: Given a uniform measure P on a finite set W of worlds, W is the only P-stable set with $r \geq \frac{1}{2}$; so only W is to be believed then.

This makes good sense: the agent’s degrees of belief don’t give her much of a hint of what to believe. *That is why the agent ought to be cautious.*
The following two statements are equivalent:

I. \(P \) and \(\text{Bel} \) satisfy \(P_1 \), the AGM axioms for belief expansion, and \(BP^{r-} \).

II. \(P \) satisfies \(P_1 \), and there is a (uniquely determined) \(X \in \mathcal{A} \), such that \(X \) is a non-empty \(P \)-stable \(r \) proposition, and \(\text{Bel}(\cdot|\cdot) \) is given by \(X \).

The following two statements are equivalent:

I. \(P \) and \(\text{Bel} \) satisfy \(P_1 \)–\(P_2 \), the AGM axioms for belief revision, and \(BP^{r} \).

II. \(P \) satisfies \(P_1 \)–\(P_2 \), and there is a (uniquely determined) chain \(X \) of non-empty \(P \)-stable \(r \) propositions in \(\mathcal{A} \), such that \(\text{Bel}(\cdot|\cdot) \) is given by \(X \).

\(BP^{r-} \) (\(\rightarrow \) of Lockean thesis) For all \(Y \in \mathcal{A} \), s.t. \(P(Y) > 0 \) [and \(Y \cap B_W \neq \emptyset \)]:

For all \(Z \in \mathcal{A} \), if \(\text{Bel}(Z|Y) \), then \(P(Z|Y) > r \).
Example: Let \(W = \{ w_1, \ldots, w_7 \} \), let \(P \) be again as in the example before.

Then if \(Bel(\cdot \mid \cdot) \) satisfies AGM, and if \(P \) and \(Bel(\cdot \mid \cdot) \) jointly satisfy BP\(^1\), then \(Bel(\cdot \mid \cdot) \) must be given by some coarse-graining of the ranking in red below.

Choosing the maximal (most fine-grained) \(Bel(\cdot \mid \cdot) \) yields the following:

- \(Bel(A \land B \mid A) \quad (A \rightarrow A \land B) \)
- \(Bel(A \land B \mid B) \quad (B \rightarrow A \land B) \)
- \(Bel(A \land B \mid A \lor B) \quad (A \lor B \rightarrow A \land B) \)
- \(Bel(A \mid C) \quad (C \rightarrow A) \)
- \(\neg Bel(B \mid C) \quad (C \rightarrow B) \)
- \(Bel(A \mid C \land \neg B) \quad (C \land \neg B \rightarrow A) \)
For three worlds again (and $r = \frac{1}{2}$), the maximal $Bel(\cdot|\cdot)$ as being determined by P and r are given by these rankings:
Moral:

- Given \(P \) and a threshold \(r \), the agent’s \(Bel(\cdot|\cdot) \) is not determined uniquely by the “→” of the Lockean thesis.

- But any such \(Bel(\cdot|\cdot) \) is closed logically iff it is given by a sphere system of \(P \)-stable \(r \) sets.

- Given \(P \) and a threshold \(r \), the agent’s maximal \(Bel(\cdot|\cdot) \) amongst those that satisfy all of our postulates is determined uniquely.

 (And there is always such a unique maximal choice \(Bel'_P \) given a rather weak auxiliary assumption.)
Two remarks:

- $B_1 \rightarrow C_1, \ldots, B_n \rightarrow C_n$:: $X \rightarrow Y$ is \textit{logically valid} iff for all P, $r \geq \frac{1}{2}$ holds:

 - If $\text{Bel}_P(C_1|B_1), \ldots, \text{Bel}_P(C_n|B_n)$
 - then $\text{Bel}_P(Y|X)$.

The resulting logic is exactly Adams’ logic of conditionals again! E.g.:

\[
\frac{X \rightarrow Y, X \rightarrow Z}{X \rightarrow (Y \land Z)} \quad \text{(And)} \quad \frac{X \rightarrow Z, Y \rightarrow Z}{(X \lor Y) \rightarrow Z} \quad \text{(Or)}
\]

\[
\frac{(X \land Y) \rightarrow Z, X \rightarrow Y}{X \rightarrow Z} \quad \text{(Cautious Cut)} \quad \frac{X \rightarrow Y, X \rightarrow Z}{(X \land Y) \rightarrow Z} \quad \text{(Cautious M.)}
\]
Two remarks:

- \(B_1 \rightarrow C_1, \ldots, B_n \rightarrow C_n \therefore X \rightarrow Y \) is logically valid iff for all \(P \), \(r \geq \frac{1}{2} \) holds:

 \[
 \text{If } \quad Bel'_P(C_1|B_1), \ldots, Bel'_P(C_n|B_n) \\
 \text{then } \quad Bel'_P(Y|X).
 \]

The resulting logic is exactly Adams’ logic of conditionals again! E.g.:

- \(X \rightarrow Y, X \rightarrow Z \) \(\frac{X \rightarrow (Y \land Z)}{X \rightarrow (Y \land Z)} \) (And)

- \(X \rightarrow Z, Y \rightarrow Z \) \(\frac{(X \lor Y) \rightarrow Z}{(X \lor Y) \rightarrow Z} \) (Or)

- \((X \land Y) \rightarrow Z, X \rightarrow Y \) \(\frac{(X \land Y) \rightarrow Z}{X \rightarrow Z} \) (Cautious Cut)

- \(X \rightarrow Y, X \rightarrow Z \) \(\frac{(X \land Y) \rightarrow Z}{(X \land Y) \rightarrow Z} \) (Cautious M.)

- **Conditionalization on Zero Sets:**

 \(P^* \), with \(P^*(Y|X) = P(Y|B_X) \), determines a Popper function.

Epilogue: Solving A Problem Contextually

A challenge to the theory:

- Intuitively, Expansion/Revision can be problematic:

\[
\begin{align*}
&Bel'_{P}(Y_1 \lor Y_2 \lor \ldots \lor Y_n | X), \neg Bel'_{P}(\neg Y_i | X) \\
&\frac{Bel'_{P}(Y_i | Y_i \lor (X \land \neg(Y_1 \lor Y_2 \lor \ldots \lor Y_n)))}{Bel'_{P}(Y_1 \lor Y_2 \lor \ldots \lor Y_n | X)}
\end{align*}
\]
Epilogue: Solving A Problem Contextually

A challenge to the theory:

- Intuitively, Expansion/Revision can be problematic:

\[Bel'_P(Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X), \neg Bel'_P(\neg Y_i \mid X) \]
\[Bel'_P(Y_i \mid Y_i \lor (X \land \neg(Y_1 \lor Y_2 \lor \ldots \lor Y_n))) \]

- Lottery’s revenge: For the same reason, if both \(P \) and \(Bel \) represent the same large finite lottery, then \(P(B_W) \) must be very close to 1!
Epilogue: Solving A Problem Contextually

A challenge to the theory:

- Intuitively, Expansion/Revision can be problematic:

\[
\frac{B_e P(Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X), \neg B_e P(\neg Y_i \mid X)}{B_e P(Y_i \mid Y_i \lor (X \land \neg(Y_1 \lor Y_2 \lor \ldots \lor Y_n)))}
\]

- Lottery’s revenge: For the same reason, if both P and Bel represent the same large finite lottery, then $P(B_W)$ must be very close to 1!

In both cases, the solution is to make qualitative belief relativized to partitions:

Possible: $B_e P,\{Z\} (Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X), \neg B_e P,\{Z'\} (Y_1 \lor Y_2 \lor \ldots \lor Y_n \mid X)$.